Ultrasonic characterization of porous silicon using a genetic algorithm to solve the inverse problem

نویسندگان

  • Julien Bustillo
  • Jérôme Fortineau
  • Gaël Gautier
  • Marc Lethiecq
  • J. Bustillo
  • J. Fortineau
  • G. Gautier
  • M. Lethiecq
چکیده

This paper presents a method for ultrasonic characterization of porous silicon in which a genetic algorithm based optimization is used to solve the inverse problem. A one dimensional model describing wave propagation through a water immersed sample is used in order to compute transmission spectra. Then, a water immersion wide bandwidth measurement is performed using insertion/substitutionmethod and the spectrum of signals transmitted through the sample is calculated using Fast Fourier Transform. In order to obtain parameters such as thickness, longitudinal wave velocity or density, a genetic algorithm based optimization is used. A validation of the method is performed using aluminum plates with two different thicknesses as references: a good agreement on acoustical parameters can be observed, even in the case where ultrasonic signals overlap. Finally, two samples, i.e. a bulk silicon wafer and a porous silicon layer etched on silicon wafer, are evaluated. A good agreement between retrieved values and theoretical ones is observed. Hypothesis to explain slight discrepancies are proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving random inverse heat conduction problems using PSO and genetic algorithms

The main purpose of this paper is to solve an inverse random differential equation problem using evolutionary algorithms. Particle Swarm Algorithm and Genetic Algorithm are two algorithms that are used in this paper. In this paper, we solve the inverse problem by solving the inverse random differential equation using Crank-Nicholson's method. Then, using the particle swarm optimization algorith...

متن کامل

Elastic characterization of porous bone by ultrasonic method through Lamb waves

The object of this research is to characterize the porous bones by an ultrasonic method using Lamb waves. In recent years, the characterization of such materials has attracted many authors and takes a perfect place in the field of medicine. It requires the development of more efficient technology for getting the necessary quality and security. This paper aims to exploits the dispersion curves o...

متن کامل

A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

Over the past few decades great efforts were made to solve uncertain hybrid optimization problems. The n-Queen problem is one of such problems that many solutions have been proposed for. The traditional methods to solve this problem are exponential in terms of runtime and are not acceptable in terms of space and memory complexity. In this study, parallel genetic algorithms are proposed to solve...

متن کامل

A Capacitated Vehicle Routing Problem considering Satisfaction Level of Customers: A Genetic Algorithm

Capacitated vehicle routing problem (CVRP) is one of the most well-known and applicable issues in the field of transportation. It has been proved to be an NP-Complete problem. To this end, it is needed to develop a high-performance algorithm to solve the problem, particularly in large scales. This paper develops a novel mathematical model for the CVRP considering the satisfaction level of deman...

متن کامل

Using a combination of genetic algorithm and particle swarm optimization algorithm for GEMTIP modeling of spectral-induced polarization data

The generalized effective-medium theory of induced polarization (GEMTIP) is a newly developed relaxation model that incorporates the petro-physical and structural characteristics of polarizable rocks in the grain/porous scale to model their complex resistivity/conductivity spectra. The inversion of the GEMTIP relaxation model parameter from spectral-induced polarization data is a challenging is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017